Please
select section below... |
![](images/01-Home-Page_35.jpg) |
![Introduction](images/section1.jpg) |
![](images/01-Home-Page_37.jpg) |
![](images/01-Home-Page_42.jpg) |
![](images/01-Home-Page_43.jpg) |
![Finding the Lowest Common Denominator](images/section2.jpg) |
![](images/01-Home-Page_45.jpg) |
![](images/01-Home-Page_46.jpg) |
![](images/01-Home-Page_47.jpg) |
![Arithmetic Sequence and Series](images/section3.jpg) |
![](images/01-Home-Page_49.jpg) |
![](images/01-Home-Page_50.jpg) |
![](images/01-Home-Page_51.jpg) |
![Finding Unit Digits of x^n](images/section4.jpg) |
![](images/01-Home-Page_53.jpg) |
![](images/01-Home-Page_54.jpg) |
|
|
![](images/01-Home-Page_28.jpg) |
FINDING
UNIT DIGITS OF X^N |
|
Thus, if you divide the exponent
of 3n (where n is a counting number) by 4, the remainder of 1 (R1) corresponds
to a unit digit of 3, R2 → a unit digit of 9, R3 → a unit digit of 7 and
R0 → a unit digit of 1. |
|
|
|
|