Please
select section below... |
![](images/01-Home-Page_35.jpg) |
![Introduction](images/section1.jpg) |
![](images/01-Home-Page_37.jpg) |
![](images/01-Home-Page_42.jpg) |
![](images/01-Home-Page_43.jpg) |
![Finding the Lowest Common Denominator](images/section2.jpg) |
![](images/01-Home-Page_45.jpg) |
![](images/01-Home-Page_46.jpg) |
![](images/01-Home-Page_47.jpg) |
![Arithmetic Sequence and Series](images/section3.jpg) |
![](images/01-Home-Page_49.jpg) |
![](images/01-Home-Page_50.jpg) |
![](images/01-Home-Page_51.jpg) |
![Finding Unit Digits of x^n](images/section4.jpg) |
![](images/01-Home-Page_53.jpg) |
![](images/01-Home-Page_54.jpg) |
|
|
![](images/01-Home-Page_28.jpg) |
FINDING
UNIT DIGITS OF X^N |
|
Ahh…a light bulb goes
off.
We know that 32007 > 22007. Therefore for 32007 we have some digits
X such as
X1X2X3X4X5X6X7X8…Xn7 with a unit digit of 7 and for 22007 we have
some digits Y1Y2Y3Y4Y5Y6Y7Y8…Yn8 with a unit digit of 8.
Now let’s look at the ten’s and unit
digit of 32007 and unit digit of 22007 as shown. |
|
|
|
|