Please
select section below... |
![](images/01-Home-Page_35.jpg) |
![Direct Variation](images/section1.jpg) |
![](images/01-Home-Page_37.jpg) |
![](images/01-Home-Page_42.jpg) |
![](images/01-Home-Page_43.jpg) |
![Inverse Variation](images/section2.jpg) |
![](images/01-Home-Page_45.jpg) |
![](images/01-Home-Page_46.jpg) |
![](images/01-Home-Page_47.jpg) |
![Work Problems](images/section3.jpg) |
![](images/01-Home-Page_49.jpg) |
![](images/01-Home-Page_50.jpg) |
![](images/01-Home-Page_51.jpg) |
![Working with Radical Expressions](images/section4.jpg) |
![](images/01-Home-Page_53.jpg) |
![](images/01-Sections_17.jpg) |
![](images/01-Sections_18.jpg) |
![Rationalizing the Denominator](images/section5.jpg) |
![](images/01-Sections_20.jpg) |
![](images/01-Sections_21.jpg) |
![](images/01-Sections_22.jpg) |
![Solving Rational Expressions](images/section6.jpg) |
![](images/01-Sections_24.jpg) |
![](images/01-Sections_25.jpg) |
![](images/01-Sections_26.jpg) |
![](images/01-Sections_27.jpg) |
![](images/01-Sections_28.jpg) |
![](images/01-Sections_29.jpg) |
|
|
![](images/01-Home-Page_28.jpg) |
WORK
PROBLEMS |
|
Think back to the last module,
Module 6: Quadratic Equations, Radicals, and Complex Numbers.
To solve a radical equation, you need to eliminate the radicals and obtain
a polynomial
equation. The key is to raise each side of the equation to
the same power after you isolated the radical expression.
If a = b, then
am = bm. |
|
|
|
|