Please
select section below... |
![](images/01-Home-Page_35.jpg) |
![Definitions](images/section1.jpg) |
![](images/01-Home-Page_37.jpg) |
![](images/01-Home-Page_42.jpg) |
![](images/01-Home-Page_43.jpg) |
![Graphs and the Vertical Line Test](images/section2.jpg) |
![](images/01-Home-Page_45.jpg) |
![](images/01-Home-Page_46.jpg) |
![](images/01-Home-Page_47.jpg) |
![Composition and Function](images/section3.jpg) |
![](images/01-Home-Page_49.jpg) |
![](images/01-Home-Page_50.jpg) |
![](images/01-Home-Page_51.jpg) |
![Line of Best Fit and Equation of a Line](images/section4.jpg) |
![](images/01-Home-Page_53.jpg) |
![](images/01-Sections_17.jpg) |
![](images/01-Sections_18.jpg) |
![Sierpinsky Triangle](images/section5.jpg) |
![](images/01-Sections_20.jpg) |
![](images/01-Sections_21.jpg) |
![](images/01-Sections_22.jpg) |
![](images/01-Sections_23.jpg) |
![](images/01-Sections_24.jpg) |
![](images/01-Sections_25.jpg) |
![](images/01-Sections_26.jpg) |
![](images/01-Sections_27.jpg) |
![](images/01-Sections_28.jpg) |
![](images/01-Sections_29.jpg) |
|
|
![](images/01-Home-Page_28.jpg) |
LINE
OF BEST FIT AND EQUATION OF A LINE |
|
Let’s take a look at
the concept of the “Line of Best Fit”.
In statistics there
are formulas to find the slope and y-intercept of the equation of a line.
However, you can get a good approximation
of the line of best fit by choosing two points that best
represent the line. Slope will be discussed in more detail in another
module,
Graphing Linear Equations and Inequalities. |
|
|
|
|